166 research outputs found

    Phenex: Ontological Annotation of Phenotypic Diversity

    Get PDF
    Phenex is a platform-independent desktop application designed to facilitate efficient and consistent annotation of phenotypic variation using Entity-Quality syntax, drawing on terms from community ontologies for anatomical entities, phenotypic qualities, and taxonomic names. Despite the centrality of the phenotype to so much of biology, traditions for communicating information about phenotypes are idiosyncratic to different disciplines. Phenotypes seem to elude standardized descriptions due to the variety of traits that compose them and the difficulty of capturing the complex forms and subtle differences among organisms that we can readily observe. Consequently, phenotypes are refractory to attempts at data integration that would allow computational analyses across studies and study systems. Phenex addresses this problem by allowing scientists to employ standard ontologies and syntax to link computable phenotype annotations to evolutionary character matrices, as well as to link taxa and specimens to ontological identifiers. Ontologies have become a foundational technology for establishing shared semantics, and, more generally, for capturing and computing with biological knowledge

    500,000 fish phenotypes: The new informatics landscape for evolutionary and developmental biology of the vertebrate skeleton: Fish phenotypes

    Get PDF
    The rich phenotypic diversity that characterizes the vertebrate skeleton results from evolutionary changes in regulation of genes that drive development. Although relatively little is known about the genes that underlie the skeletal variation among fish species, significant knowledge of genetics and development is available for zebrafish. Because developmental processes are highly conserved, this knowledge can be leveraged for understanding the evolution of skeletal diversity. We developed the Phenoscape Knowledgebase (KB; http://kb.phenoscape.org) to yield testable hypotheses of candidate genes involved in skeletal evolution. We developed a community anatomy ontology for fishes and ontology-based methods to represent complex free-text character descriptions of species in a computable format. With these tools, we populated the KB with comparative morphological data from the literature on over 2500 teleost fishes (mainly Ostariophysi) resulting in over 500,000 taxon phenotype annotations. The KB integrates these data with similarly structured phenotype data from zebrafish genes (http://zfin.org). Using ontology-based reasoning, candidate genes can be inferred for the phenotypes that vary across taxa, thereby uniting genetic and phenotypic data to formulate evo-devo hypotheses. The morphological data in the KB can be browsed, sorted, and aggregated in ways that provide unprecedented possibilities for data mining and discovery

    The Teleost Anatomy Ontology: Anatomical Representation for the Genomics Age

    Get PDF
    The rich knowledge of morphological variation among organisms reported in the systematic literature has remained in free-text format, impractical for use in large-scale synthetic phylogenetic work. This noncomputable format has also precluded linkage to the large knowledgebase of genomic, genetic, developmental, and phenotype data in model organism databases. We have undertaken an effort to prototype a curated, ontology-based evolutionary morphology database that maps to these genetic databases (http://kb.phenoscape.org) to facilitate investigation into the mechanistic basis and evolution of phenotypic diversity. Among the first requirements in establishing this database was the development of a multispecies anatomy ontology with the goal of capturing anatomical data in a systematic and computable manner. An ontology is a formal representation of a set of concepts with defined relationships between those concepts. Multispecies anatomy ontologies in particular are an efficient way to represent the diversity of morphological structures in a clade of organisms, but they present challenges in their development relative to single-species anatomy ontologies. Here, we describe the Teleost Anatomy Ontology (TAO), a multispecies anatomy ontology for teleost fishes derived from the Zebrafish Anatomical Ontology (ZFA) for the purpose of annotating varying morphological features across species. To facilitate interoperability with other anatomy ontologies, TAO uses the Common Anatomy Reference Ontology as a template for its upper level nodes, and TAO and ZFA are synchronized, with zebrafish terms specified as subtypes of teleost terms. We found that the details of ontology architecture have ramifications for querying, and we present general challenges in developing a multispecies anatomy ontology, including refinement of definitions, taxon-specific relationships among terms, and representation of taxonomically variable developmental pathways.This work was supported by the National Science Foundation (NSF DBI 0641025), National Institutes of Health (HG002659), and the National Evolutionary Synthesis Center (NSF EF-0423641)

    Folding Wings like a Cockroach: A Review of Transverse Wing Folding Ensign Wasps (Hymenoptera: Evaniidae: Afrevania and Trissevania)

    Get PDF
    We revise two relatively rare ensign wasp genera, whose species are restricted to Sub-Saharan Africa: Afrevania and Trissevania. Afrevania longipetiolata sp. nov., Trissevania heatherae sp. nov., T. hugoi sp. nov., T. mrimaensis sp. nov. and T. slideri sp. nov. are described, males and females of T. anemotis and Afrevania leroyi are redescribed, and an identification key for Trissevaniini is provided. We argue that Trissevania mrimaensis sp. nov. and T. heatherae sp. nov. populations are vulnerable, given their limited distributions and threats from mining activities in Kenya. We hypothesize that these taxa together comprise a monophyletic lineage, Trissevaniini, tr. nov., the members of which share the ability to fold their fore wings along two intersecting fold lines. Although wing folding of this type has been described for the hind wing of some insects four-plane wing folding of the fore wing has never been documented. The wing folding mechanism and the pattern of wing folds of Trissevaniini is shared only with some cockroach species (Blattodea). It is an interesting coincidence that all evaniids are predators of cockroach eggs. The major wing fold lines of Trissevaniini likely are not homologous to any known longitudinal anatomical structures on the wings of other Evaniidae. Members of the new tribe share the presence of a coupling mechanism between the fore wing and the mesosoma that is composed of a setal patch on the mesosoma and the retinaculum of the fore wing. While the setal patch is an evolutionary novelty, the retinaculum, which originally evolved to facilitate fore and hind wing coupling in Hymenoptera, exemplifies morphological exaptation. We also refine and clarify the Semantic Phenotype approach used in previous taxonomic revisions and explore the consequences of merging new with existing data. The way that semantic statements are formulated can evolve in parallel, alongside improvements to the ontologies themselves

    A Semantic Model for Species Description Applied to the Ensign Wasps (Hymenoptera: Evaniidae) of New Caledonia

    Get PDF
    Taxonomic descriptions are unparalleled sources of knowledge of life's phenotypic diversity. As natural language prose, these data sets are largely refractory to computation and integration with other sources of phenotypic data. By formalizing taxonomic descriptions using ontology-based semantic representation, we aim to increase the reusability and computability of taxonomists' primary data. Here, we present a revision of the ensign wasp (Hymenoptera: Evaniidae) fauna of New Caledonia using this new model for species description. Descriptive matrices, specimen data, and taxonomic nomenclature are gathered in a unified Web-based application, mx, then exported as both traditional taxonomic treatments and semantic statements using the OWL Web Ontology Language. Character:character-state combinations are then annotated following the entity–quality phenotype model, originally developed to represent mutant model organism phenotype data; concepts of anatomy are drawn from the Hymenoptera Anatomy Ontology and linked to phenotype descriptors from the Phenotypic Quality Ontology. The resulting set of semantic statements is provided in Resource Description Framework format. Applying the model to real data, that is, specimens, taxonomic names, diagnoses, descriptions, and redescriptions, provides us with a foundation to discuss limitations and potential benefits such as automated data integration and reasoner-driven queries. Four species of ensign wasp are now known to occur in New Caledonia: Szepligetella levipetiolata, Szepligetella deercreeki Deans and Mikó sp. nov., Szepligetella irwini Deans and Mikó sp. nov., and the nearly cosmopolitan Evania appendigaster. A fifth species, Szepligetella sericea, including Szepligetella impressa, syn. nov., has not yet been collected in New Caledonia but can be found on islands throughout the Pacific and so is included in the diagnostic key. [Biodiversity informatics; Evaniidae; New Caledonia; new species; ontology; semantic phenotypes; semantic species description; taxonomy.

    Matching arthropod anatomy ontologies to the Hymenoptera Anatomy Ontology: results from a manual alignment

    Get PDF
    Matching is an important step for increasing interoperability between heterogeneous ontologies. Here, we present alignments we produced as domain experts, using a manual mapping process, between the Hymenoptera Anatomy Ontology and other existing arthropod anatomy ontologies (representing spiders, ticks, mosquitoes and Drosophila melanogaster). The resulting alignments contain from 43 to 368 mappings (correspondences), all derived from domain-expert input. Despite the many pairwise correspondences, only 11 correspondences were found in common between all ontologies, suggesting either major intrinsic differences between each ontology or gaps in representing each group’s anatomy. Furthermore, we compare our findings with putative correspondences from Bioportal (derived from LOOM software) and summarize the results in a total evidence alignment. We briefly discuss characteristics of the ontologies and issues with the matching process.Database URL: http://purl.obolibrary.org/obo/hao/2012-07-18/arthropod-mappings.ob

    Transforming the study of organisms: Phenomic data models and knowledge bases

    Get PDF
    The rapidly decreasing cost of gene sequencing has resulted in a deluge of genomic data from across the tree of life; however, outside a few model organism databases, genomic data are limited in their scientific impact because they are not accompanied by computable phenomic data. The majority of phenomic data are contained in countless small, heterogeneous phenotypic data sets that are very difficult or impossible to integrate at scale because of variable formats, lack of digitization, and linguistic problems. One powerful solution is to represent phenotypic data using data models with precise, computable semantics, but adoption of semantic standards for representing phenotypic data has been slow, especially in biodiversity and ecology. Some phenotypic and trait data are available in a semantic language from knowledge bases, but these are often not interoperable. In this review, we will compare and contrast existing ontology and data models, focusing on nonhuman phenotypes and traits. We discuss barriers to integration of phenotypic data and make recommendations for developing an operationally useful, semantically interoperable phenotypic data ecosystem

    Evolutionary Characters, Phenotypes and Ontologies: Curating Data from the Systematic Biology Literature

    Get PDF
    BACKGROUND: The wealth of phenotypic descriptions documented in the published articles, monographs, and dissertations of phylogenetic systematics is traditionally reported in a free-text format, and it is therefore largely inaccessible for linkage to biological databases for genetics, development, and phenotypes, and difficult to manage for large-scale integrative work. The Phenoscape project aims to represent these complex and detailed descriptions with rich and formal semantics that are amenable to computation and integration with phenotype data from other fields of biology. This entails reconceptualizing the traditional free-text characters into the computable Entity-Quality (EQ) formalism using ontologies. METHODOLOGY/PRINCIPAL FINDINGS: We used ontologies and the EQ formalism to curate a collection of 47 phylogenetic studies on ostariophysan fishes (including catfishes, characins, minnows, knifefishes) and their relatives with the goal of integrating these complex phenotype descriptions with information from an existing model organism database (zebrafish, http://zfin.org). We developed a curation workflow for the collection of character, taxonomic and specimen data from these publications. A total of 4,617 phenotypic characters (10,512 states) for 3,449 taxa, primarily species, were curated into EQ formalism (for a total of 12,861 EQ statements) using anatomical and taxonomic terms from teleost-specific ontologies (Teleost Anatomy Ontology and Teleost Taxonomy Ontology) in combination with terms from a quality ontology (Phenotype and Trait Ontology). Standards and guidelines for consistently and accurately representing phenotypes were developed in response to the challenges that were evident from two annotation experiments and from feedback from curators. CONCLUSIONS/SIGNIFICANCE: The challenges we encountered and many of the curation standards and methods for improving consistency that we developed are generally applicable to any effort to represent phenotypes using ontologies. This is because an ontological representation of the detailed variations in phenotype, whether between mutant or wildtype, among individual humans, or across the diversity of species, requires a process by which a precise combination of terms from domain ontologies are selected and organized according to logical relations. The efficiencies that we have developed in this process will be useful for any attempt to annotate complex phenotypic descriptions using ontologies. We also discuss some ramifications of EQ representation for the domain of systematics

    Annotation of phenotypic diversity: decoupling data curation and ontology curation using Phenex

    Get PDF
    BackgroundPhenex (http://phenex.phenoscape.org/) is a desktop application for semantically annotating the phenotypic character matrix datasets common in evolutionary biology. Since its initial publication, we have added new features that address several major bottlenecks in the efficiency of the phenotype curation process: allowing curators during the data curation phase to provisionally request terms that are not yet available from a relevant ontology; supporting quality control against annotation guidelines to reduce later manual review and revision; and enabling the sharing of files for collaboration among curators.ResultsWe decoupled data annotation from ontology development by creating an Ontology Request Broker (ORB) within Phenex. Curators can use the ORB to request a provisional term for use in data annotation; the provisional term can be automatically replaced with a permanent identifier once the term is added to an ontology. We added a set of annotation consistency checks to prevent common curation errors, reducing the need for later correction. We facilitated collaborative editing by improving the reliability of Phenex when used with online folder sharing services, via file change monitoring and continual autosave.ConclusionsWith the addition of these new features, and in particular the Ontology Request Broker, Phenex users have been able to focus more effectively on data annotation. Phenoscape curators using Phenex have reported a smoother annotation workflow, with much reduced interruptions from ontology maintenance and file management issues

    Phenoscape: Identifying Candidate Genes for Evolutionary Phenotypes

    Get PDF
    Phenotypes resulting from mutations in genetic model organisms can help reveal candidate genes for evolutionarily important phenotypic changes in related taxa. Although testing candidate gene hypotheses experimentally in nonmodel organisms is typically difficult, ontology-driven information systems can help generate testable hypotheses about developmental processes in experimentally tractable organisms. Here, we tested candidate gene hypotheses suggested by expert use of the Phenoscape Knowledgebase, specifically looking for genes that are candidates responsible for evolutionarily interesting phenotypes in the ostariophysan fishes that bear resemblance to mutant phenotypes in zebrafish. For this, we searched ZFIN for genetic perturbations that result in either loss of basihyal element or loss of scales phenotypes, because these are the ancestral phenotypes observed in catfishes (Siluriformes). We tested the identified candidate genes by examining their endogenous expression patterns in the channel catfish, Ictalurus punctatus. The experimental results were consistent with the hypotheses that these features evolved through disruption in developmental pathways at, or upstream of, brpf1 and eda/edar for the ancestral losses of basihyal element and scales, respectively. These results demonstrate that ontological annotations of the phenotypic effects of genetic alterations in model organisms, when aggregated within a knowledgebase, can be used effectively to generate testable, and useful, hypotheses about evolutionary changes in morphology
    • …
    corecore